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THE NUMERICAL SOLUTION OF NON-SINGULAR LINEAR
INTEGRAL EQUATIONS

By L. FOX, D.Puir.,, ano E. T. GOODWIN, Pu.D.
The National Physical Laboratory, Teddington, Middlesex

(Communicated by E. C. Bullard, F.R.S.—Received 4 September 1952—Revised T November 1952)

The integral equations discussed and illustrated are those of Fredholm, with fixed limits in the
integral and including the eigenvalue problem, and of Volterra, with a variable upper limit in
the integral. The methods are mostly based on finite-difference theory, the integrals being replaced
by formulae for numerical quadrature. Computational details are given for several methods, and
there is a discussion of error analysis for Volterra’s equation. Some methods are given for
accelerating the convergence of classical iterative processes.

1. INTRODUCGTION

We shall follow the continental practice of referring to integral equations with fixed limits
in the integral as equations of Fredholm type, and to those with a variable limit as equations
of Volterra type. The equations of Fredholm type of the first and second kinds are

respectively given by [ k) fl0) dy = g0, (1)
[ ke, ) dy = gt2) 100, @
The corresponding equations of Volterra can be written as
[ k) f19) dy = (), (3)
[ k) S0 dy = o) 4110 ®)
Another type of equation of frequent occurrence is given by
[ k) ) dy = 1), (5

This is an eigenvalue problem, invariably associated with fixed limits in the integral, and
we shall therefore class it with equations of the Fredholm type.

In equations (1) to (4) fis the wanted function, all other functions being known either
analytically, graphically or numerically. In equation (5) both the eigenfunction f and the
eigenvalue A have to be calculated.

In this paper we restrict ourselves to non-singular integral equations, by which we mean
here that the limits of integration, whether fixed or variable, shall remain finite, and that
both £(x, y), the ‘kernel’, and the required f should be well behaved throughout the range
of integration. More specifically, our methods require that the definite integrals should be
calculable by numerical quadrature, using known formulae in the theory of finite differences.

Most of the methods presented are indeed based on the theory of finite differences, and
have analogy with those used for the solution of differential equations. We have demon-
strated in previous papers (Fox 1949; Fox & Goodwin 1949) methods of solving ordinary
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502 L. FOX AND E. T. GOODWIN ON

differential equations with various boundary conditions. When the boundary conditions
were specified at a single point we used step-by-step methods, and when boundary con-
ditions were given at distinct points relaxation methods were found convenient. In the
numerical solution of integral equations we find a similar difference in technique. Fredholm’s
equations are conveniently treated by solving simultaneous equations, Volterra’s equations by solving
recurrence relations.

In part A of the paper we discuss, with illustrative examples, the solution of Fredholm’s
equations (1), (2) and (5). In every case the integral is represented by a quadrature formula
involving values of the wanted function f at pivotal points in the range of integration. We
shall usually use a simple formula with a difference correction or truncation error of known
form. For equations (1) and (2) the simple formula leads to a set of algebraic linear simul-
taneous equations whose solution gives a first approximation to the required pivotal values
of f. This approximation can be improved by use of the difference-correction technique
(Fox 1949).

The same process applied to equation (5) involves the determination of one or more
latent roots and vectors of a matrix, of order equal to the chosen number of pivotal points.
Standard methods are available, and relaxation is again often convenient.

For all these problems we have an alternative to the use of a difference correction. This
consists in computing approximate solutions for different interval lengths, and calculating
a more accurate result by the method of the ‘deferred approach to the limit’ (Richardson
& Gaunt 1927).

We also make some observations on means of accelerating the convergence of some
classical iterative methods.

Part B is concerned with the solution of Volterra’s equations. The suggested procedure
here is to calculate successive pivotal values by recurrence. Simple quadrature formulae
could be used, a first approximation calculated, and the solution improved by the use of
the difference correction (Fox & Goodwin 1949). It is often less laborious, however, to use
at the outset quadrature formulae of high accuracy; it is not difficult to decide, after a few
steps, the number of significant differences which must be retained in the quadrature.

Several examples, some with known solutions, are solved in illustration of the method,
and there is a discussion of building-up error and its possible suppression.

It is probable that singular integral equations are of more practical importance and
mathematical interest. Non-singular equations, however, are of quite frequent occurrence,
and the methods given here enable accurate solutions to be obtained without a prohibitive
expenditure of time and energy.

A. EQUATIONS OF FREDHOLM TYPE
In this part we shall be concerned with the solution of integral equations of the following

forms: b
[ Koy A1) dy = () 4100, @
[ k,9) fl0) dy =113, (5

| Ky) fi) dy = ). 1)
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In each case we shall express the integral as a finite sum of terms of the form a,k(x,,v,) f(y,),
and for this purpose we need to examine some formulae for numerical integration.

2. NUMERICAL INTEGRATION

In general, formulae using differences are preferred to those of the Lagrangian type.
We can truncate the former when contributions become negligible, whereas without an
examination of the differences the degree of an adequate Lagrangian polynomial is not
known. The most useful finite-difference integration formulae can be written in the form

%J‘:+nhf(x) dx = %‘f()"{“fl‘f— ves +f;1—l+%f;,+A, (6)

where f, = f(a), f,=f(a+7h), and A, the difference correction, is a function of the differences
of f. The form of the difference correction depends, as in the corresponding formulae of
differentiation, on whether we wish to use central differences or forward and backward
differences.

Using central differences we have, for the simplest case when # =1 and the integral is
taken between adjacent pivotal points, the formula

1) dn = AU ) — e+ ¥, . (7)
and, in the general case,
1 raetnh 1 1
il f(x)dx=§J%+f1+---+ﬁ,_1+§fn+A,} .
A = (— 7o+ ...) (/o).

Using forward differences we have, corresponding to (7), the equation

i, 00 Q= Mo ) o+ B~ . O

and, in the general case,

%famf(x)dx:%fo+f1+~~-+ﬁz—1+%‘f+A> }
A= (—&HA + A2 —2A0A o) (=S

All these formulae use differences obtamed from pivotal points outside the range of

integration. A formula using only pivotal points inside the range can be obtained from
equation (10) by recasting the difference correction into the form

A=—(HV' +5gV+A5V +.. D JSat (A —H AP AN L) fo (11)
This is the difference correction of Gregory’s integration formula.

'The Gregory formula is our main ally in the solution of Fredholm integral equations.
We are concerned with their solution only at pivotal points inside the specified range of
integration ; the kernel may not even be defined outside the range, so that the use of formulae
like (8) may become impossible. Central-difference formulae should not, however, be
overlooked. The correction involves fewer terms, and the smaller coefficients give rise to
slightly better accuracy. They are particularly useful when the kernel has different forms
in different parts of the range of integration, and examples of the use of the various formulae,
given in the following sections, will illustrate some possibilities.

(10)

62-2
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504 L. FOX AND E. T. GOODWIN ON

3. SoruTioN OF FREDHOLM’S EQUATIONS OF THE SECOND KIND

We treat first Fredholm’s equation of the second kind, given by equation (2).
Using equation (6) for the representation of the integral, we can write equation (2)
in the form

Rk (%, 0) fo+-R(%, 1) fit-oo k(% n=1) f,_y - 3k(%, 1) f,+ A(x) ] = g(x) + (%),
where £(x, 5) denotes the value of £(x, ) at the point (x, s#). In this equation we can give any
value to x for which £ is defined, but the same 741 values of f, at the equidistant pivotal
points of the range (a, b), are present for any x. Since f(x) also appears on the right, however,
it is desirable to choose the x’s to be pivotal points of (4, 6). Taking all pivotal points into
consideration we can then replace the integral equation by a set of (n+1) linear simul-
tanous equations typified by

h[3k(7, 0) fo+-k(r, 1) Syt Hh(r n=1) [y +35(r, 1) fo+ A ] = g+
where now £(7,s) denotes the value of £(x,y) at the point (7%, sk), and r takes the values

0,1,...,n. Combining the f, on the left with those on the right, we can write the equations
in the form

{1 —3Ak(0,0)} fo—hk(0, 1) fy ... —hk(0,n—1) f,_, —$hk(0, n) ], - —8o+hAy,
—k(1,0) fo+-{1 —Rk(L, 1)} fy o —hE(L,n—1) /= 3hE(1, ) f, = —g + A,

................................................................................................

(12)

=l (n—1,n— 1)} f,, —Fhk(n— 1) f, = — g, +hA,
—3hk(n, 0) fo—hk(n, 1) fy ... =hk(r,n—1) foy +{1 = §hk(n, n)} f, = — g, + A,
We will briefly consider some possibilities in the solution of these equations.

If we use the Gregory formula the A, are linear functions of the f,. If, further, we knew
a priori the order of the last significant difference in (11), these linear functions would be
known. The A, in (12) could then be taken over to the left, and a set of equations produced
for the f, which would have different coefficients, and only the g, on the right. This is effec-
tively equivalent to the use of a Lagrangian formula for the representation of the integral.
Such a method will be found convenient for Volterra’s equation, where pivotal values of
fare calculated successively, and it is relatively easy to determine the adequate Lagrangian
polynomial. In Fredholm’s equation most of the work, involving the approximate calcula-
tion of the whole solution, must be done before this information becomes available.

We might, alternatively, choose a very small interval 4, with the intention of making the
A, negligible. This may involve the solution of a large number of linear equations, with
great labour and the danger of errors through ill-conditioning. The number of equations
could be reduced by using a formula like Simpson’s rule, but again we cannot, without
further work, say much about the accuracy of the results. Finally, we might solve the equa-
tions keeping up to fourth differences in A, and again keeping up to sixth differences,
comparing the results. None of these methods is quite satisfactory. They involve a great
deal of labour, or are uncertain as regards accuracy, or both.

An iterative approach seems to be more attractive. In this method we obtain a first
approximation to the required solution by neglecting the A, in equations (12), using, that
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is, the simplest of all quadrature formulae. For each x we then calculate and difference the
quantities k£(x, 0) f,, £(x, 1) f,, etc., using the approximate f, just calculated. All the A, can
then be calculated and inserted as corrections to the right-hand side of equations (12).
Corrections to f are then obtained trivially, and the process repeated until there is no further
change. In practice, convergence is extremely rapid, more than two cycles rarely being
required.

We can express this technique symbolically as follows. If 4 denotes the square matrix
of the coefficients of f,, g the vector with coefficients g,, and A the vector with components
A,, we solve in succession the equations

Af® = —g,
A0 = hA(fO),
Af® = hA(f®),

the final solution being given by

JS=fO+f DL @4 ..
This approach is identical with that of Fox (1949) for problems involving differential
equations of boundary-value type.

The choice of the interval % is of course rather arbitrary. We want to keep to a minimum
the number of linear equations, but the interval must not be so large that the finite-difference
equations are meaningless. Since the differences are examined, the method guards against
the possibility of obtaining wrong results from this cause. It also ensures that neither too
few nor too many differences are retained in the quadrature formulae, the point of truncation
not being necessarily the same for all x.

4. ExampLE 1

We now illustrate the proposed method by means of a simple example with a known
solution. The equation

%fjwcos (x—y) fly) dy :%cosx—l-f(x) (13)

has the solution Sflx) =sinx.

We will try to solve equation (13) by the method of the previous section, using the Gregory
integration formula, to obtain four-decimal values of f{x) at x = 0° (10°) 90°. To nullify
the effects of rounding errors in the computation, especially in the solution of the linear
equations, five decimals are retained throughout.

There are here ten linear equations of type (12), but their coefficients are such that their
solution is not difficult. We notice first that the matrix of coeflicients, after dividing the first
and last rows by 2, is symmetric about the centre of its array of elements, a property called
centro-symmetric by Aitken (1939), and characterized by the relation

ar, s = an—r-l—l, n—s+1»

where 7 is the order of the matrix.

If n is even we can split the # equations into two sets of 4z equations, thus considerably
simplifying the work of solution. If 7 is odd we have two sets of orders (n—1) and (n+1)
respectively.
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Consider, for example, the four equations of centro-symmetric form given by
Ay Xy + @y Xy +ay3 X3+ Xy = by,
g Xy F Aag Xy + gy X3+ Agy X4 = by,
Ay Xy F Qo3 Xy + Agy X3+ Ay Xy = by,
A1y %)+ a3 Xy + g X3+ ay Xy = by
Adding respectively equations (1) and (4), (2) and (3) of the set (14) we produce two
equations for the variables (x; +4,), (¥, 1) in the form
(@11 +a1y) (% +24) + (a1, +ay5) (%y+%5) = 171‘1“54,1
(g1 +agq) (21 +%4) + (9o +ay3) (%5 +43) = bz‘l‘bs-J
By subtraction of the same pairs of equations we produce two equations for the variables
—xy) +(a13—ay3) (x5 —%3) = b

(%, —x,), (x5—x5) in the form
1~b4)}
%y) -+ (Agp —ag3) (Xg—%3) = by—bs.

(a1 —a14) (%
(@1 —ay4) (%, —
The required solution to (14) can be obtained trivially from the solutions of (15) and (16),
and this process is quicker by a factor of four than the direct solution of (14).
The matrix will always be centro-symmetric if the kernel is an even function of x—y,
and in this case it will also be symmetric in the usual sense, that is,

s OF k(xy) = k(y, ).

We see further that the matrices of equations (15) and (16) are then also symmetric, and
the equations can be solved compactly by the method of Cholesky as illustrated by Fox
(19500).

Simplifications of this kind are quite common in the solution of integral equations. In
particular, a symmetric kernel will always produce a symmetric matrix for the coefficients
of the linear equations, a property of some importance in the eigenvalue problem of
equation (5).

Returning to our integral equation (13), we first set up equations of type (12), divide the
first and last rows by two, carry out the procedure resulting in (15) and (16), and obtain

] (14)

(15)

(16)

a, s=a

PHILOSOPHICAL
TRANSACTIONS
OF

the following equations, in which % = %7 and f, = f(7h).
Jot+Js Ji+/s Jott JstSs Jitts
+0-44444 —0-12872 —0-14241 —0-15178 —0-15654 = —0-31831+3A(A,+A,),
—0-12872 +0-70178 —0-32995 —0-35166 —0-36268 = —0-73750+ A(A,+Ay),
—0-14241 —0-32995 +0-63494 —0-38907 —0-40129 = —0-81597-+ A(A,+A,),
—0-15178 —0-35166 —0-38907 058533 —0:42766 = —0-86964-+ A(A;+A),
015654 —0-36268 —0-40129 —0-42766 +0-55894 — —0-89689+ A(A,+Aj);
Jo—Js Si=Js Jo=ta Js—Js Ji=ts
+0-44444 —0-09012 —0-06641 —0-04067 —0-01370 —0-31831+ %A AO
—0:09012 +0-85378 —0-10773 —0-06598 —0-02222 —0-51640+ £
—0:06641 —0-10773 +0-92062 —0-04861 —0-01637 = —0-38049-+ £
—0-04067 —0-06598 —0-04861 -+0-97023 —0-01002 = —0-23302+ £
—0-01370 —0-02222 —0-01637 —0-01002 +0-99662 —= —0-07847+ £ A4
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The first step is to solve these equations with the A, neglected, thus obtaining first approxi-
mations f{?, f{?, ..., fs¥. For eachxwe then calculate and difference the quantities /k(x, 0) /32,
kk(x, 1) f19, etc., and obtain an approximation to ZA, from equation (11). The latter are
then inserted on the right-hand side of the linear equations, and with a trivial amount of
calculation corrections f{V, f{V, ..., f¢V are obtained. The process should be repeated until
further corrections are negligible.

In this case the maximum discrepancy between f?+ £V and sin x is only one unit in the
fourth decimal place. We record in table 1 the first approximation ¥, a typical table
(for x = 20°) from which A, is calculated, the corrections £V, and a comparison of our
solution with the analytical result sin x. Note that in the calculation of A, seventh differences
are effectively zero and can safely be ignored.

TaBLE 1

computation of A,

r~ \

S y [ cos (20—y)° £ f SO4 £ ging
0-00004 0° 0-00001 —0-00001 0-0000 0-0000
+3839
0-17546 10° 0-03840 0 —0-00180 0-1737 0-1736
3839 — 463
0-34556 20° 0-07679 — 463 + 56 —0-00354 0-3420 0-3420
3376 407 +48
0-50516 30° 0-11055 870 104 -9 —0-00518 0-5000 0-5000
2506 303 39 —13
0-64941 40° 0-13561 1173 143 —22 —0-00668 0-6427 0-6428
+1333 —160 +17 + 5
0-77394 50° 0-14894 1333 160 —17 —0-00796 0-7660 0-7660
0 0 0 -1
0-87494 60° 0-14894 1333 160 —18 —0-00900 0-8659 0-8660
—1333 + 160 —18
0-94937 70° 0-13561 1173 + 142 —0-00976 0-9396 0-9397
— 2506 + 302
0-99494 80° 0-11055 —871 —0-01022 0-9847 0-9848
— 3377
1-01028 90° 0-:07678 —0-01038 0-9999 1-0000
hA,=0-00615

5. ExaMPLE 2
We now consider a more practical example taken from a paper by E. R. Love (1949), in
which he shows that the field due to two equal circular coaxial conducting disks at equal
or at equal and opposite potentials, with zero potential at infinity, can be obtained from
a function f(x) defined by the integral equation
Sx) ifilm&—_y)g}f(y) dy =1, (17)
in which the disks are of radius 7 and separated by a distance ar. Love shows further, by

analytical methods, that there exists a unique, continuous, real and even solution, and that
it can be expressed as a convergent series of the form

o) =14 3 (FU[ k() dy, (18)

where the iterated kernels £,(x, y) are given by

bs9) = iy b0 = [ ook d (19)
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This method of solution is somewhat laborious, whereas the suggested finite-difference
approach is relatively trivial.

Consider first the positive sign in equation (17), with a = 1. If we take an interval 2 = £,
there are nine pivotal points and nine linear equations for solution. We find, however, that
the matrix is again of centro-symmetric type, so that we can solve the equations in two
lots of five and four respectively. In the four equations analogous to (16) we see, moreover,
that all the constant terms are zero, so that, for the first approximation, f{® = fQ, O = fQ,
etc., and the function is even. The corresponding A are therefore also equal, and sub-
sequent corrections f® have the same property. The final solution is also, therefore, an even
function.

The equations corresponding to (15) can be written down, and with the usual adjust-
ments to produce symmetry and allowance for the equality of f, and f_,, we find the following
five equations:
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0-52387 0:04724 0-04407 0-04100 0-01989 = H(1—AA_,),
0-04724 1-10407 0-10596 010345 0-05093 =1—AhA_,,
0-04407 0-10596 1-11937 0-12583 0-06366 =1—AA_,,
0-04100 010345 0-12583 1-14324 0.07490 =1 —hA_,,
0-01989 0-05093 0-06366 0-07490 0-53979 = }(1—7ZA,).

To four decimals we obtain the first approximate solution f©, the difference corrections,
for which differences up to the sixth were significant, and a more accurate solution f as
shown in table 2.

TABLE 2
x -1 -3 —3 -1 0
fo 0-7554 07152 0-6838 0-6645 0-6581
hA —0-0001 +0-0005 +0-0008 +0-0010 +0-0010
f 0-7557 07149 0-6832 0-6638 0-6574

Subsequent corrections could hardly do more than change the rounding off in the
fourth decimal.

If we take the negative sign in the integral equation the linear equations corresponding
to (20) are only slightly affected. The coefficients of A change sign, the off-diagonal
coefficients change sign, and the diagonal terms have the following values:

047612, 0-89593, 0-88063, 0-85676, 0-46021.

The equations are rather ill-conditioned compared with (20), and both solutions and
difference corrections have larger values. The results are shown in table 3.

TABLE 3
x -1 -2 -3 —1 0
fo 1-6364 17470 1-8365 1-8934 1-9127
A 0-0014 0-0027 0-0034 0-0035 0-0035
f 1-6397 1-7520 1-8424 1-8997 1-9191
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6. OTHER METHODS AND COMMENTS
(1) The deferred approach to the limit

For casual computers unused to manipulating differences and finite-difference equations,
the method used by Richardson & Gaunt (1927) for the solution of ordinary differential
equations, and applied by Hartree & Womersley (1937) and Fox (19504) for partial
differential equations, can be applied also to the solution of integral equations.

The theory of the method depends on the fact that, under certain conditions and with the
use of certain formulae, the difference between the true solution of the integral equation
and the approximation obtained by using simple quadrature formulae at an interval 4 can

be written in the form E(h) — BI>+4Ch+ ... (21)

Thus if we compute approximate solutions f, for intervals £,, then the accurate solution fis
related to the f, by the equations

JS—f, = BR2+Chi+
S—fs =Bh;+Chi+ ..., (22)

Taking only two approximations, we ignore the term in A%, eliminate B and find
}lZ
S=rfetp=m e/ (23)
g , 3

If three approximations are available we can eliminate both B and C and find a more
accurate expression for f.

The simplest approximate quadrature formula is that given by equation (6) with A
ignored, and this is satisfactory as regards the theory underlying equation (21). The usual

technique is to obtain approximate solutions for intervals %, 34, .... If two such solutions
are known, equation (23) reduces to the simple form
S=Jh) + 3 Gh) =)} (24)
while for three approximations we have
S=S(ah) 13 {(h) /(1)) =25 (3h) —/(h)}. (25)
For the second example of the last section we find the following approximations:
X 41 +3 0
h=1 1-5980 1-8400
h=1% 1-6268 1-8188 1-8940
h=% 1-6364 1-8365 1-9127

If we now extrapolate, using equation (24) for & = } and %, we obtain the values 1-6396,
1-8424 and 1-9189, which agree very closely with those of table 8. Extrapolation at 1 and 0,
using equation (25) for £ = 1, § and %, produces the results 1-6398 and 1-9194.

This method, though of con51derable simplicity and usefulness, has the drawback that
the error of the final extrapolated value is uncertain, though some idea of its magnitude can
often be obtained by extrapolating in various ways. In the present problem, for example,

VoL. 245. A. 63
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two kinds of extrapolation at x = 0 and 1 produced values differing at most by 5 units in
the last figure, so that results could be given to three decimals with some confidence.

(ii) Relaxation methods

In the previous examples we solved the linear equations by direct methods. It may
happen that the diagonal coefficients of the matrix are large compared with the off-diagonal
terms. In this case iteration or relaxation methods can be used with convenience. The set
of equations (20), for example, can be solved very rapidly by relaxation. After the first
approximation has been computed in this way the A are calculated as before and inserted
as ‘still unliquidated residuals’.

Alternatively, relaxation can be used in conjunction with the method of the deferred
approach to the limit. In this connexion it is particularly useful, for solutions are relatively
easily calculated at a large interval, and these serve as useful ‘initial guesses’ for the solution
at a smaller interval.

(iii) The use of central differences

When the kernel exists outside the range of integration it is possible to calculate approxi-
mate values of the wanted function at points outside the range, and hence to use central-
difference formulae for the calculation of the corrections A.

The procedure here is to calculate the first approximation, for points internal to the range,
in exactly the same way as before. When these values are available we can compute approxi-
mations at external points directly from the integral equation. For equation (13), for
example, we could compute results for ¥ = —z direct from the equation

J(—2) = %fjﬂCOS (z+y) fly) dy—~~72;cosz.

In the integration only values at internal points are used. We again ignore difference
corrections, since at this stage we want the external values to fit on smoothly with the
internal ones, that is, to have an error arising from the same source.

When the external approximations have been produced, more differences can be added
at each end of the range in the quadratures. This has two advantages. First, we can use the
more accurate central-difference integration formulae, and, more important, differences
of higher order are available. The latter are clearly welcome whenever the contribution
from the last available difference used in the ordinary Gregory formula is significant.

(iv) A classical iterative method

The solution to Love’s problem given by equation (17) can also be computed iteratively

from the formula ! a
() — e f(r-1 2
O =17 [ e ) (26)

where f®(x) is the nth approximation or iterate to the required f{x). Iff® = 1 this method
is identical with that presented by equations (18) and (19), but we could use any f© as
a start, the rate of convergence depending on the difference between f© and the true f{x).
If we take f@ = 1 in equation (26) we can calculate, by numerical quadrature using the
Gregory formula, values of f® at every pivotal value of x. Repeating the process we can
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next evaluate f®(x), and if the iterative cycle is convergent, the steady solution f®(x) is
the required solution of our problem.

There is a considerable amount of work in this unrefined process, but we can shorten it
by using methods for the acceleration of convergence of sequences. A useful device is that of
Aitken (1926), who showed that, in certain circumstances, a second sequence g®, obtained
from a given sequence /™ by the relation

f(n-t- l?f(n 1) ___Jl'(n)2
g( f(n+1)+f(n H_9 f(n)a (27)

converges to the same value as f®, and more rapidly.

In applying this to Love’s problem we used an interval 2 = } in the quadrature, to ensure
the accuracy of the Gregory formula. Table 4 shows successive values of the sequences
J® and g® for the three points x = 0, } and 1. There is seen to be striking unanimity in the
£™, which also bear comparison with the results obtained by the previous methods. A final
check on the last g™, which at this stage may have a small accumulation of rounding errors,
can easily be obtained by substitution in equation (26).

TABLE 4
case 1 case 2
x=0 x=4 x=1 x=0 x=1% x=1
) g™ fim P Fm g(r?) J'r(n) ) j(n) g(nf }‘(n) g‘B
1-0000 —  1-0000 —_ 1-0000 — 1-0000 —_ 1-0000 —_ 1-0000 —
0-5000 — 0-5396 —_— 06476  — 1-5000 — 1-4604 — 1-3524

0-7288 0-65673 0-7483 0-6832 0-8047 0-7558 17288 1-9191 1-6691 1-8425 1-5095 1-6394
0-6249 0-6573 0-6536 0-6831 0-7336 0-7558 1-8327 1-9189 1-7638 1-8422 1-5806 1-6398
0-6720 0-6573 0-6965 0-6831 0-7659 0-7558 1-8798 1.9190 1-8067 1-8424 1-6129 1-6395
0-6506 — 0-6770 — 0-7513 — 1-9012 — 1-8262 — 16275 —

Other methods, such as Euler’s transformation for the acceleration of convergence of
alternating series, can also be used with advantage.

7. EIGENVALUE PROBLEMS

‘We now turn to the next equation of Fredholm type, the eigenvalue problem, given by

the equation 5
A k) £19) dy = 1), (5)

Solutions now exist only for discrete values of A, and the problem is to find one or more of
such A values (eigenvalues) and the associated function f{x) (eigenfunction).
Following the technique of § 3 we replace the integral equation by a set of simultaneous
equations, given by
{(3£(0,0) =} fo+-£(0, 1) fi+ ... + k(0,2 —1) f,_, +-34(0, ) £, + A9 = O,
24(1,0) fo+-{A(L, ) =@ i+ +-R(Ln—1) Sy +3E(L,m) f, + Ay = 0,
...................................................................................................... » (28)
$h(n—1,0) fo+k(n—1,1) fi+ ... +{k(n—1,n—1) —pi} f,_, + 3k(n—1, 1) f,+ A,_; = 0,
2h(n, 0) fot-k(n, 1) fit ... +k(n,n—1) £, 4+ {3k (n,n) — i} f, + A, = 0,
where y = 1/kA, f, = f(rh).

63-2
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As before, the A, are linear functions of f,, and could be incorporated in the coeflicients
off, if we knew in advance the order of the last significant difference in the chosen quadrature
formula. Again we prefer to treat the A, as correction terms, whose inclusion in (28) can be
used to improve an approximate solution.

The set of equations (28) can be written in the matrix form

(4 —p) f+Af =0, (29)

and we solve this, as before, by an iterative procedure. The first step is to neglect A,
obtaining first approximations 4@ and f© from the equation

(4—u9) fO — o, (30)

This is a standard ‘latent-root’ problem, and many methods are available for its treatment.
We note that the equation is homogeneous in £, so that f = 0 everywhere is a trivial solution,
non-trivial solutions existing only for discrete values of 4, those for which the determinant
| A—u| = 0. To each such yx there corresponds a vector f, unique save for an arbitrary con-
stant of multiplication.

If 4 is symmetric all the roots x are real. In our case 4 can be made symmetric, provided
the kernel is symmetric, by dividing its first and last rows by 2. This is equivalent to writing
equations (29) and (30) in the forms

(B—Dy) f+ DA =0, (31)
(B—Dyio) f© =0, (32)

where B is the symmetric matrix, D a diagonal matrix with { in its first and last rows, unity
elsewhere.

We shall use the method of relaxation for the solution of (32). This method is particularly
useful when we want to pick out a particular solution, for which we may have a rough
approximation to /. The procedure, given in more detail by Fox (1948, 1949), is as follows.

(i) Make a guess at numerical values of fat all pivotal points.
(i) Calculate an approximation to the corresponding value of x by the use of Rayleigh’s
principle, giving fBf
llt f/Df’
where a dash denotes matrix transposition.

(iii) Calculate the residuals (B—Dg) f, and try to liquidate them by making changes in
the guessed values of f. When no further improvement seems possible take the new values
of f, insert in (33) and calculate a new g, repeating the cycle until the residuals are negligible
and there is no further change in 4. v

(iv) To get a more accurate solution we now compute the Af©, insert them in (31),
and obtain a better approximation to x from the equation

_S'(B+DA) f
S

(33)

(34)
recalculate the residuals, now given by
= (B—Dp+DA) f, (35)

and repeat the relaxation cycle until x settles down and residuals are again negligible.
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Note that in the liquidation of the residuals, especially those of equation (85), it is
essential not to vary unduly the magnitude of the vector f. This is most easily effected by
keeping constant the largest component of f. ‘

Again the process may have to be repeated if the A, have changed further, but the number
of repetitions is usually small.

8. ExawmprE 3

As a simple example, consider the equation

tn
[ "sin (x-+1) f(9) dy = f(x). (36)
It is easy to show that there are only two non-trivial solutions, given by
A7V =L14-dm,  f(x) = cosx+tsinw. (37)

Taking an interval = {4, there are seven pivotal points in the range, and seven
equations of the form (31), given here by ‘

Jo N Jo Js Ja Js Je
—%3u 01294 02500  0-3536 04330  0-4830  0-2500 +1A, =0,
0-1294 0-5000—x 0-7071  0-8660 09659  1-0000  0-4830 -+ A, =0,
02500 0-7071  0-8660—px 0-9659 10000 09659  0-4330 -+ A, =0,
0-3536 0-8660  0-9659  1:0000—ux 0-9659  0-8660  0-3536 - A, = 0,!(38)
0-4330 0-9659  1:0000  0-9659  0-8660—ux 0-7071  0-2500 -+ A, =0,
0-4830 1-0000  0-9659  0-8660  0-7071  0-5000—ux 0-1294 + A, =0,
02500 0-4830 04330  0-3536 02500  0-1294 —tu +3A,=0,

where f, = f(#&7), A, = A(f,).
Equations (38) are of centro-symmetric type, and, as in § 3, can be split into two sets of
four and three equations respectively. We have

Jotts Sitfs Jetss Js

0-2500—3x 0-6124 0-6830 0-7071 +3(Ay+Ag) =0,

06124 1-5000—x 1-6730 1-7320 + (A +4A;) =0, (39)

0-6830 1-6730 1-8660—u 1-9318 + (Ay+A,) =0,

0-3536 0-8660 0-9659 1:0000—x  + A, =0,

and v

Jo—Jo Js=h Ji—ts
0-2500+%u 0-3536 0-1830 +3(Ag—A,) =0, ,
0-3536 0-5000+4 0-2588 + (As—A) =0, (40)

0-1830 . 0-2588 0-1340+4 + (A,—A,) =0.

Now if A, is neglected, there are non-trivial solutions to (38) for seven values of #. Equation
(38) has been replaced by (39) and (40), and four roots now come from the vanishing of
the determinant corresponding to (39), three from that corresponding to (40). Itis easy to
show that, to four decimals, all but one root of each of these determinants vanish. There are
therefore only two solutions for which the eigenvalue is finite.
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The non-zero roots x are not identical, so that the root of (39) must give a trivial solution

to (40), thatis, for this root, f, = f4, f1 =[5, f2 =/ and also Ay = A, etc. We can then write
equations (39) in the form

Jo N Ja Js
0-2500—4x 0-6124 0-6830 0-3536 +3A, =0,
0-6124 1-5000—x 1-6730 0-8660 + A =0, (41)
0-6830 1-6730 1-8660—x 0-9659 + A, =0,
0-3536 0-8660 0-9659 0-5000—}x +3A, =0,

and the matrix is still symmetric.

The solution of (41) corresponds to the first of the known analytical solutions. A similar
argument shows that the odd solution and its corresponding x are given by equation (40),
with f —f; replaced by f,, etc.

The qualitative nature of the solutions has thus been confirmed by numerical arguments,
and we now proceed to the solution of (41).

Neglecting A, and taking the initial guess

Jo =01 =/, =13 =1-0000,
we tind the corresponding value of g, calculated by equation (33), to be 4-8079. After
calculation of residuals and a little relaxation, we obtain

f= 08500, 1-0500, 1-1500, 1-2000,
and a new calculation of x gives a value 4:8657. Further relaxation gives a final result
FO = 0-8492, 1-0400, 1-1600, 12009, 4® = 4-8660.

We now calculate the A,, for which the computation corresponding to A,, using the
‘Gregory formula, is shown in table 5. The computed values of A are 4-0-0372, 0-0456,
0-0507 and 0-0526. When these values are inserted into equation (34) we obtain the new
value g = 4-9097. The new residuals given by (35) are small and necessitate no alteration
in f, the final result being

f=0-8492, 1-0400, 1-1600, 1-2009; x = 4-9097, A~! =1-2854.

This solution agrees within one unit in the last figure with the analytical solution (37).

TABLE 5
12y[m [sin (47 +¥) f(¥)]
0 0-4246
+3108
1 0-7354 — 416
2692 —723
2 1-0046 1139 +310
1553 —413 +99
3 1-1599 1552 +409 —84
+ 1 - 4 +15
4 1-1600 1556 +424
—1555 +420
5 1-:0045 —1136
—2691
6 0-7354

Ay= +0-0507
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The fact that the vector suffers less change than the eigenvalue when the difference
correction is applied is no unusual feature of eigenvalue problems, and was noticed by
Fox (1947, 1949) in connexion with the solution of differential equations. This phenomenon
is not confined to oscillatory functions. Consider, for example, the integral equation

1
A 24+ 1) dy = (o). (42)
It is easy to show that this has two eigenvalues, given by the roots of the equation
402300 —45 = 0,

and the eigenfunctions have the form x?—3% -1

In this case, using an interval 4 = }, two applications of the difference correction are
needed to produce the final A, but the vector is correct to within one unit in the fourth
decimal after the first application. Results are shown in table 6.

TABLE 6
x first approx. second approx. third approx. analytical solution
0 0:3197 0-3091 0-3090 0-3090
1 0-:3622 0-3523 0:3522 0-3522
. 0-4897 0-4818 0-4818 0-4818
3 0:7024 0-6977 0-6977 0-6977
1 1-0000 1-0000 1-0000 1-0000
A=1-2292 A=1:2807 A=1-2812 : A=1:2812

9. ExAMPLE 4

Integral equations of eigenvalue type can be constructed, with the use of the Green’s
function, from a corresponding differential equation (see, for example, Lovitt 1950).
Such problems are of interest since the kernel, incorporating the Green’s function, has
a discontinuous derivative. For example, the differential equation

2
Y —0, f=0for x=0,4 (43)
X
is equivalent to the integral equation
k(x,y)

A ) 1) ey =, (44)
where k(x,y) = x(l——%y) for 0<x<y, (45
=y(l—4x) for y<x<<4. )

The integral must now be taken in two parts, and we write equation (44) in the form

A1) [ dy+x[ 5 1= 19) S10) dy ] =11 (40)

One limit of integration is now variable, in distinction to all our previous examples. Equa-
tion (6) can still be used for the representation of the integral, but the Gregory formula for
the difference corrections is not now convenient, especially when x in (46) is near an end
of the range. There are two difference corrections A®(x) and A®(x), corresponding to each
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of the integrals in equation (46), and we shall be able to evaluate them by using the central-
difference formulae of equations (7) and (8).

We first observe, directly from the integral equation, that f(0) = f(4) = 0. Then, taking
an interval 4 = }, we set up equations corresponding to (28), and, neglecting difference
corrections, produce the following first approximation in the usual way:

x 0 1 1 14 2 2L 3 31 4
f 0000 0-580 0-893 1-000 0-953 0-797 0-566 0-293 0-000
A = 0-9221.

We note in passing that this first approximation, both to f and 4, agrees within a unit in the
last figure given with that obtained by Fox (1949) from the differential equation (43),
using the same interval and the approximation

R2d?f]dx? = §2f.
The next step is the calculation of the differcnce corrections, which we can write in
the form _ AR = (1—1x) AO(x) +2AO(x),

where A®(x), A®(x) are respectively the corrections associated with

[fway and ["Z0-15)50) dy.

When the integrands are tabulated we find that either fourth or fifth differences are
negligible, and other differences can be extrapolated with confidence, to enable central-
difference formulae to be used for the computation of the difference corrections. Self-
explanatory results are given in table 7, extrapolated differences appearing in brackets.
The new application of Rayleigh’s principle gives a value 1 = 0-9175, agreeing within one
unit in the last figure with the analytical solution. The final residuals are positive for x> 2,
negative for x< 2, suggesting that values of f(x) for x>2 should be increased (by about
1 unit), while those for # <2 should be decreased (by about half a unit). With these adjust-
ments the values agree with the analytical solution within about half a unit in the last
figure.

TABLE 7
1

) a2 a-wse | A

0-000 (—337) (=9
+580 (+170) (0)

0-580 267 (— 9) 100249 1015 (+110) (0) —0-0331  +0-0054
+313 +61 (0) —345 (—18)

0893 —206 -9 0-0444  0-670 + 92 (0) —00247  +0-0086
+107 +52 + 2 253 —~18

1-000 —154 -1 00593  0-417 74 +5  —00178  +0-0104
— 47 +45 — 4 179 13

0-953 —109 —11 0-0701  0-238 61 -3  —00122  +0-0106
—156 +34 +10 118 16

0-797 ~ 15 -1 00777  0-120 45 +7  —00078  +0-0096
—231 +33 (0) 73 9

0-566 — 42 (— 1) 00826  0-047 36 0  —00045  +0-0072
—273 (+32) (0) 37 -9

0-293 (- 10) (- 1) +0-0847  0-010 + 27 (0)  —0-0019  +0-0039

0-000 (+ 18)( ) (0)
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10. THE DEFERRED APPROACH TO THE LIMIT

The method of the deferred approach to the limit can also be used for eigenvalue
problems. For example, if we take the same differential equation (43), but with f= 0 at
x = 0 and 1, the integral equation is

[ FE 1) dy — ),

where k(x,y) =x(1—y) for 0<x<y,
=y(l—x) for y<x<l.
Table 8 shows the values of f and A, at intervals of 2 = } and }, obtained by using the
simplest quadrature formula, with A neglected. The results of the extrapolation process

are also given, and these values agree with the analytical solution within less than a unit
in the last figure.

TaBLE 8~

8x h=1% h=1} extrapolated values
0 0-000 0-000 0-000
1 — 0-609 —_
2 0-940 0-937 0-936
3 — 1-049 —
4 1-:000 1-000 1-000
5 — 0-835 —
6 0-593 0-594 0594
7 — 0307 —
8 0-000 0-000 0-000

A=3743 A=3-688 A=3-670

11. FREDHOLM’S EQUATION OF THE FIRST KIND

Treatment, both theoretical and practical, of Fredholm’s first equation

[ ko) £19) dy = () (1

is difficult and complicated. It is easy to see, for some types of kernel, that solutions are
possible only for a restricted class of functions g(x). For example, we observe, by successive
differentiation of (1), that if £(x, y) satisfies a linear differential equation of the form
n n—1
0100 g 20 () = 0,

then solutions of (1) exist only if g(x) satisfies the same differential equation. Thus for
kernels of this kind there is no well-behaved solution for arbitrary well-behaved functions
k(x,y) and g(x), and it is known theoretically that this is true for all regular kernels. Fred-
holm’s equation of the first kind is then almost always a singular integral equation, in the
sense of this paper.

The problem is further complicated by the fact that, given the necessary relation between

k and g, there may be an infinity of solutions. For a kernel of the form £(x, y) = Zn a,(x) b,(y),
1

for example, it is clear that no solution exists unless g(x) has the form

n

g(x) = Z¢,a.(x),

1

Vor. 245. A. 64
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and then any solution is possible for which

f: b(0) S dy =6, (r=1,.000m).

We need only consider a form for f(y) which contains more than 7 arbitrary constants to
confirm the existence of an infinity of solutions.

These phenomena must have some counterpart in any attempt at evaluating solutions
by numerical methods. Our standard technique of replacing the integral equation by a set
of linear algebraic equations leads in this case to the following equations:

oo R ke
,
H0,0) K(0,1) K(0,2) .. Bh(0,n) =g
1
(1,00 (1,1) A(1,2) ... $k(Ln) =5g—A,1 (47)
Wi 0) K1) hm2) . dhnn) =g A,

Now suppose the kernel is a polynomial in y of degree p. We first try to solve the equations
with Aneglected. If the interval zis such that n>p 41, there is a linear relation between the
columns (and therefore also between the rows) of the matrix of coefficients, and the matrix
is singular. If g is arbitrary we cannot then find the first approximate solution; if g is such
that there is a corresponding linear relation between its pivotal values an infinity of such
solutions can be found.

It will be noticed that nothing is gained by including the A in the left of equations (47),
modifying the coefficients accordingly (see §§3 and 14). The effect of this is to multiply
each column by a constant, which will not affect the singularity of the matrix.

A solution can be obtained if the matrix is non-singular, and therefore the number of
pivotal points must be at most equal to p+1, or n<{p. Any function g(x) will now yield
a solution to the algebraic equations, and we have to consider whether it is possible to
improve this solution, regarded as an approximation to the solution of the integral equation.
In the first place we know that the integral equation has no solution unless g(x) is of special
form, so that the approximation obtained for arbitrary g(x) is not likely to be ‘smooth’;
it will not difference, and no A can be calculated. If g(x) has the required form then the
approximation may or may not be ‘smooth’. Even in the latter case, however, we are
unlikely to be able to calculate an accurate A, since £ is already a polynomial of degree p,
the integrand is £f, and we have only p+1 pivotal points. We may, of course, improve the
first approximation to some extent by using as many differences as are available with the
Gregory formula, or, equivalently, by allowing for A from the beginning by using a formula
such as Simpson’s rule or one of the ‘strip’ formulae of integration (see, for example,
Bickley 1939). The accuracy cannot, however, be specified or estimated, and only in the
special case when the solution f'is a constant can we calculate accurately the difference
corrections and proceed to obtain an accurate solution of the integral equation.
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NON-SINGULAR LINEAR INTEGRAL EQUATIONS 519

Some alleviation of this difficulty is made possible by the choice of a different kind of
quadrature formula. Typical of the proposed class is the formula of Gauss, for which

[ ) ) dy = 3 4,k0n,0,) f10), (45)

where the 4, are known constants and the y, are selected non-equidistant points in the range
of integration, both 4, and y, depending only on n. This formula, involving n+1 pivotal
points, is exact if the integrand is a polynomial of degree 2z, and therefore provides a better
chance of using an exact quadrature formula while still retaining a non-singular matrix.

A further difficulty arises, for any quadrature formula, when we consider the behaviour
of the kernel in the »-direction. If the kernel is a polynomial of degree m in x, there will be
a linear relation between the rows if there are more than m+1 pivotal values of x, and the
matrix is then singular.

Consideration of kernels of polynomial form is of course academic, since such equations
can be solved quite simply by analysis. They do, however, indicate the kind of difficulty
likely to be experienced when dealing with integral equations with regular kernels, for all
finite-difference formulae of integration, including those of the Gauss type, depend for their
reliability on the accuracy with which the functions 1nvolved can be represented by
polynomials.

In illustration of the arguments presented above we proceed to consider some simple
integral equations.

() [ e 719y dy = g o (49

If we take more than two algebraic equations the matrix is singular because the kernel is
linear in y, and we find numerically, what is obvious analytically, that g must also be linear.
Using the simple quadrature formula, we take pivotal points at 0 and 1 and obtain the

equations Lfi=g,—
thth=6—-4A v
The first approximation is f; = 2g,, f, = 2¢, —4g,, and this cannot be improved. It is a
correct solution of the integral equation only if fis a constant, say unity, for which
o) = r+i.
If g(x) = 42+ 1, a correct solution is given by f(x) = x. This cannot be found by using the

simple quadrature formula, but is obtained from the Gauss formula for n = 1, for which
the equations are given by

(x=0) 05y, f(y1) +0-5¢,f(y,) = %,
(x=1) 0-5(1+y) fy,) +0-5(1+y,) flyy) = %

05

1
where y1=%—7 Yo = 2+§3§'
Solving these equations we find

1 1
f(yl>:%“ «/ f( ):%+2~/3’

which is correct.
(2) | |9 1) dy = (). (50)

64-2
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Here neither the simple quadrature formula nor any Gauss formula could produce an
accurate solution, since the kernel is linear in the x-direction, and no more than two pivotal
points can be used.

(3 [ V69 ) dy = gla). | (1)

The solution f(x) = x corresponds to g(x) = 3{(1+2)t—x3}.
Consider first the approximate solution obtained by using the simplest quadrature
formula, with A neglected, at an interval # = 1. We obtain the following results:

J(0) Sf@) J@) S A1)

0-0299 0-2832 0-3995 0-9580 0-6886

These values are not very close to the true solution, and in particular are not smooth, so
that A cannot be calculated.

Using a more accurate integration formula of the same type, that of Simpson, for which,
at the same interval,

1
fo k(x,y) f(y) dy
= 1g[A(%, 0) f(0) + 4k(x, 1) S(1) +2k(x, ) f(3) +4k(x, }) S(}) +K(x, 1) f(1)], (52)
we obtain the following results:
J(0) S(@) J3) S3) J()
0-0448 0-2124 0-5992 0-7185 1-0329
These values are in general more accurate than the former, but further correction is
impossible.
Repeating the calculations at an interval / = §, we obtain the following results:
VACORRVAC YR L€ RGNV AC- YR AC: Y A B A € YA€ )
Simple quadrature 0-0144 0-1464 0-1573 0-6822 —0-2338 1-8157 —0-5076 1-7323 0-4003
Simpson’s rule 0-0216 0-1098 0-2360 0-5117 —0-3507 1-3618 —0-7614 1-2992 0-6004

These solutions, obtained at a smaller interval than the former, are much less accurate,
bearing little resemblance to the true solution.

Consider now the solutions obtained by the more powerful Gaussian formulae. We
tabulate below the results for various values of the x of equation (48). In each case the values
chosen for x subdivide the range of integration into equal intervals:

Yr

J,)
1 02113 0:7887

0-2092 0-7893

2 0-1127 0-5000 0-8873
0-1113 0-5021 0-8856

3 0:0694 0:3300 0-6700 0-9306
0-0698 0-3295 0-6705 0-9302

4 0-0469 0-2308 0-5000 0-7692 0-9531
0-0479 0-2288 0-5033 0-7645 0-9575

S
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We find, as with the more simple quadrature formula, that, as theinterval decreases, solutions
at first become more accurate (and in this respect the Gauss formula is much the better of
the two), but after a time begin to get worse again.

This phenomenon can be regarded in the following way. If we write the set of equations

in the matrix form Af = g+ A, - (538)

let us now consider the A as the residual vector 4f—g obtained by substituting the true
solution f into equation (53). There is no doubt that, as the interval decreases, A also
decreases, but the solution is given by

JS=A47(g+A),

and the matrix 4-! has coefficients which rapidly become larger, so that there is no reason
to expect the ‘ correction vector’ 4~'A to get smaller.

This clearly corresponds to the case of a polynomial-type kernel in which, for a small
enough interval, the matrix 4 becomes singular. Any finite-difference method in which
solutions do not steadily improve in accuracy cannot be regarded as satisfactory, since we
have in general no means of determining the ‘best’ interval to use, and in any case we
cannot estimate the accuracy of our ‘best’ solution.

We note also that in all our approximate solutions the error is an oscillatory function of x.
Inspection of the integral equation gives the reason for this, in that f{y) could have oscillatory
variation without causing great changes in the g(x). Accurate estimation of f would thus
be expected to be difficult, and this fact has led other workers—for example, Bullard &
Cooper (1948) and Kreisel (1949)—to consider the evaluation of some suitably smoothed
function of f. We do not pursue these methods here, since we are concerned throughout this
paper with methods of finding accurate solutions or, equivalently, of determining the error
of approximate solutions. -

B. EQUATIONS OF VOLTERRA TYPE

We now turn to equations of the Volterra type, in which one of the limits in the integral
is variable. Here there is no eigenvalue problem, and a further simplification permits
attention to be focused on the integral equation (4) of the second kind.

The simplification relates to the connexion between Volterra’s equations of the first and
second kinds. For non-singular kernels, the only type considered in this paper, the first
equation ean always be transformed into the second. For example, taking

[ k) S dy = g, (3)
we obtain by differentiation the equation
X d
K ) S) + | ok 9) ) dy = 800,

an integral equation of the second kind unless £(x,x)=0. In the latter case we repeat the
differentiation, producing finally the equation

x an+ 1 dn+l
B9(,2) S0+ | i ke ) S0) dy = G, (54)
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on
h k® =|5=
where (x, x) [ank(x, y)]y=x

is the first non-zero derivative of £(x, y) with respect to x when y is equated with x.

In practical examples it is possible that the functions £(x, ¥), g(¥) may be given as functions
of x only by graphical or numerical results, and it may be objected that it is then not possible
to obtain accurate high-order derivatives. Unfortunately, it seems that in such a case a
solution can be computed accurately only to the extent to which such derivatives can be
obtained. As an example, consider the verysimple case when £(x, y) = (¥ —y)?and the func-
tion g(x) is only known in graphical form. The analytical solution is then f(x) = §g"(x),
and no matter what method is adopted it will not be possible to obtain the solution to better
accuracy than that to which the third derivation of g(x) can be computed.

Part B of this paper is therefore concerned solely with methods of obtaining accurate
solutions of the Volterra equation of the second kind, given by

[ K9 f1) dy = £i) +()- (4)

12. POSSIBLE METHODS OF SOLUTION

We first consider methods of solution analogous to those used for Fredholm’s equation.
Using finite-difference methods, the initial step is the replacement of the integral equation
by a set of algebraic linear simultaneous equations. In equation (4) we let x take the set
of pivotal values 0, &, 24, ..., use an integration formula of type (6), and produce, in analogy
with (12), the following set of equations:

j;) . = 8o
— k{1, 0) fy (1~ BAR(L 11, — g hA, (55
—3hk(2,0) fo—hk(2, 1) fi+{1 — $hk(2,2)} /o = — g, +hAAy,

.....................................................................

It is not here necessary to solve the equations simultaneously; the matrix of coefficients
is already in triangular form, and successive values of f are calculable immediately from
successive equations. As in the case of Fredholm’s equation, all finite-difference methods
differ only in the treatment of the difference corrections A, and there are two main possi-
bilities. First, we could get approximate solutions, at two or more different intervals and
with A ignored throughout, producing a more accurate answer by the method of the
deferred approach to the limit. Alternatively, from the approximate solution at one in-
terval we could calculate approximate values of A, replace them in the linear equations,
and improve the first approximation. These methods might be called indirect. Secondly,
A could be expressed in Lagrangian form and incorporated in equations (55), an accurate
solution then being obtained in one application of the solving process. This might be called
the direct method, and, as already mentioned in § 3, has advantages for Volterra’s equation.
Before going on to discuss the direct method we shall, in the next section, treat an example
by indirect methods.
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13. ExaAMPLE 5. INDIRECT METHODS

We take an example from a paper by Friedlander (1941), in which it is required to
solve the integral equation

X —
jo (7—~_y—2k—2)2f(y) dy :f(x)_"(;’f:fé’)‘z' (56)

(a) Using first the method of the deferred approach to the limit, we solve equations of
type (55), with A neglected, for each of the intervals 2 = 4, # = } as far as x = 5-0. The left
half of table 9 shows these results, and on the right are shown the extrapolated values given
by equation (24). Values at intermediate points at the smaller interval are omitted.

(b) The alternative indirect method is to correct a first approximation, obtained asin (),
by computing approximate A, and including them in equations (55). Difficulties are at
once apparent. The computation of A, for example, with % = }, necessitates accurate
integration between the limits 0 and 4, when no values of the integrand within this range
are available. For some kernels integration could be effected, as in §9, by considering points
outside the range, for which approximate f are already available and £ is calculable. In
the present example the kernel 2(24 —y) 2 approaches its singularity too quickly to permit
accurate determination of A, at this interval, and the same applies to the A corresponding
to the first few pivotal values of x.

With % = 1, however, the singularity is too far away to cause real difficulty, and all A
can be calculated. Moreover, as x increases, and more tabular points are included in the
interval 0 to x, it becomes possible to increase the interval to 4 = 4, and later to use the more
convenient Gregory formula. For this example it was possible to change the interval at
x = 2from h = } to h = {, and the results after one application of the difference correction,
again with intermediate points omitted, is shown in the last column of table 9.

TABLE 9
final values

1 I's B
_ approx ma;ce solutions . method (a) method (b)
x J(x) (h=1) Jx) (h=%) S(x) J(x)

0 0-25000 0-25000 0-25000 0-25000
% 0-12444 0-12497 0-12515 0-12515
1 0-06872 0-06924 0-06941 0-06942
11 0-04143 0-04184 0-04198 0-04197
2 0-02690 0-02722 0-02733 0-02733
2% 0-01859 0-01883 0-01891 0-01891
3 0-01352 0-01372 0-01379 0-01378
3% 0-01026 0-01041 0-01046 0-01046
4 0-00805 0-00818 0-00822 0-00821
41 0-00649 0-00659 0-00662 0-00662
5 0-00536 0-00545 0-00548 0-00547

The discrepancy between the results of the two methods is at most one unit in the last
figure. This could be due to real error, since neither method has been pursued to its final
conclusion. Itis worth noting, however, that it would be difficult to obtain closer agreement
without retaining another figure in the calculations, since a combination of the extrapolation
process with unfavourable roundings could produce an error of nearly one unit.
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14. THE DIRECT METHOD

The method we have found most effective for Volterra’s equation again uses the basic
equations (55), with A given by the Gregory formula (11). The differences in this formula
are now expressed as functions of the pivotal values, so that, retaining throughout differences
uptoa predetermined order, a particular equation of set (55) can now be written in the form

{L—haok(n,n)} 1,

—hla,k(n,n—1) f,_1+ak(n,n—2) f,_o+... +a,k(n, 1) fi+ak(n, 0) f] =—g, (57)
from which f, can be calculated directly. The g, are numerical constants depending only on
the order of differences retained in the quadrature formula.

We notice first that this formula cannot be used for the calculation of the first few values
of f, since not enough differences exist for the application of Gregory’s formula. Initial
values can be calculated without difficulty, however, in the case of Volterra’s equation,
from the Taylor series, for which the derivatives are obtainable by repeated differentiation
of the given integral equation. Differentiating » times, we obtain the relation

) +690) =3 S (80 0) S0} + [ b)) dy

Putting x = 0, we find
d —1-s
£00) =5 [ S s 9 S} —g00), (58)

a recurrence relation from which successive values of f®(0) can be evaluated. It should be
noted that in the important case for which £(x, y) is a function only of (x—y), equation (58)
reduces to the simpler form

F(0) =3 K9(0) fo1-9(0) — ¢(0). (59)

When sufficient starting values are available from the Taylor series to make possible the
use of Gregory’s quadrature formula, successive values of f(x) are calculated from equation
(57). To determine the order of differences which must be retained it is necessary, for the
first step, to record and difference the individual terms of the integrand k(x,y) f(y), and it
may be desirable to check, at a later stage, that the order retained is still adequate.

It is found that the same coeflicient a, is associated with the terms of the integrand r steps
removed from either end of the range of integration. If the last difference retained, more-
over, is of order p, then in general a, = 1 for s>>p. We give in table 10 some values of a;
corresponding to values of p from 1 to 6.

TABLE 10
p 0 1 2 3 4 5 6

a

a, 05 0416 0-375 0-34861 0-329861 0-31559 19312 0-30422 45370
a 1-0 1-083 116 1-24583 1-32083 1-39217 92328 1-46038 35979
a, 10 10 0-9583 0-87916 076 0-62397 48677 0-45346 39550
aq 10 1-0 1-0 1-02638 1-10138 1-24408 06878 1-47142 85714
a, 10 10 1-0 1-0 0-98125 0-90990 41005 0-73939 31878
as 1-0 1-0 10 10 1-0 1-01426 91799 1-08247 35450
ag 1-0 1-0 1-0 1-0 1-0 10 0-98863 26058
a 1-0 10 1-0 1-0 1-0 10 10
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These coefficients a, require modification if in equations (11) and (57) n<2p, that is,
when in equation (11) any forward and any backward difference involve the same pivotal
value or values. This change is necessary only for values of n lying between p and 2p, for
when 7 is less than p the difference of order p does not exist and the Gregory formula is not
accurate. In this case either more initial values must be obtained from the Taylor series,
or the interval of tabulation reduced.

The required modification is simple, the coefficient a, being replaced by a,+a,_,—1.
This can be computed most effectively by tabulating a,, with argument s, and sliding
alongside a table written in reverse order, as shown in table 11. The modified coefficient is
then obtained by adding adjacent entries and subtracting unity.

A similar device may be used, when £(x,y) = k(x—y), to assist the calculation of the
summation in equation (57). In this case £(z, s) is a function of a single variable and may be
written £,_,. Then a,k, is tabulated for argument £, in reverse order, and recorded on a mov-
able strip alongside a table of ¢ f, tabulated with argument s, as shown in table 12. Since
a, = 1 for s> p, the values of f, are written down without modification as they are calculated,
and the strip moved down one place to make g, £, adjacent to the value f,_, just calculated.

TaBLE 11 TaBLE 12
s a, Qs s a,fs a,k, t
a, 1 0 ayfo k, n
1 a 1 1 a fi koy n—1
n—b—l a,,_;,_l 1 p a :f_,, k,,:_p n;-[)
nop Cucp % s+l Fon Fap-s n—p-1
¥4 a, Qyyp n—p—1 j;t—;-l kp:l-l p+1
p+l 1 mpr n—p Jos 2k, p
n—1 1 a; ' n—1 f,,__l a, kl 1
n 1 ag

15. ExAMPLE 5. DIRECT METHOD WITH k(x, y) =k(x—y)

We now repeat the previous example, equation (56), by the direct method.
The kernel is a function of (¥ —y), so that the recurrence relation (58) can be used for
the calculation of derivatives in the Taylor expansion. The latter can be written in the form

Slx) = ro—gary + (3%) 21, — ., (60)
where 7, = (—2)" f®(0)/n!,
and satisfies the recurrence relation
Ty =Hn+1) 7oty 2y Tal (61)

T -1
R AN
1 2 —1
The direct use of equation (60) would involve the calculation of many values of 7, and
the work can be reduced considerably by means of the Euler transformation given by

2=, S = (=2 3 (—2) b, (62)

The seties in equation (62) converges more rapidly than that of (60), and reduces by a factor
of two the necessary number of values of 7.

Vor. 245. A. 65
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At aninterval 2 = } we find that in the quadrature only differences up to order four need
be retained, so that it is sufficient to calculate by Taylor series the first four values f,, f1, />
and f;, corresponding to ¥ = 0, 1, 1 and £ respectively. We now calculate f, for n = 4(1)8,
using equation (57) with modified coefficients a,+4-a,  —1. These coefficients, based on
table 10, with p = 4 and using five decimals, are given in table 13.

TABLE 13
\\ n 4 5 6 7 8

AN

0 0-31111 0-32986 0-32986 0-32986 0-32986
1 1-42292 1-30208 1:32083 1:32083 1:32083
2 0-53333 0-86806 074792 0-76667 0-76667
3 1:42292 0-86806 1-20278 108264 1-10139
4 0-31111 1:30208 074792 108264 0-96250
5 — 0-32986 1:32083 0-76667 1-10139
6 — — 0-32986 1-32083 0-76667
7 — — — 0-32986 1-32083
8 — — — — 0-32986

We next prepare a table of %£,_, f,, given by

B Js
bk, J = 22+ i(n—9)]*

and record the values to an extra decimal. Then, since & = 0-5, f, (x = 1) is obtained from
equation (57) in the form '

’
a

1 3 sJ S
1-03889f, = 32 EOW‘ (63)
the modified coefficients @, being taken from the first column in table 13. This value should
be checked against that calculable from the Taylor series, and when agreement is obtained

we can proceed with confidence to calculate the remaining f, of this group from the equations

1 n—1 d; st
1-04123f, = m_zﬂmﬁ—(n—ﬂ]” (64)
the 4, being taken in succession from columns 5, 6, 7 and 8 of table 13.

. The tables of kk,__ f, are collected together in table 14. The first column (7 = 4) can be
recorded immediately from the values obtained from the Taylor series, and in each succes-
sive column one more value can be added when the corresponding f has been calculated.
The summations of equations (63) and (64) are effected by placing side-by-side corre-
sponding columns of tables 13 and 14 and accumulating the products of adjacent terms.

TABLE 14
n 4 5 6 7 8

S

0 0-013889 0-:011834 0-:010204 0-008889 0-007812
1 0-011533 0-009691 0-008257 0-007120 0-006202
2 0-010012 0-008274 0-006953 0:005924 0-005108
3 0-009099 0-007370 0-006091 0-005118 0:004361
4 — 0-:006855 0-:005553 0-004589 0-003856
5 — — 0-005278 0-:004275 0-:003533
6 —_— — —_— 0004146 0-003358
7 — — - —_ 0-003318
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For n>8, f, can now be calculated, using equation (57) with the unmodified coefficients
a, given in table 10. The function Aa,k, is tabulated with argument ¢ in reverse order, and
recorded on a movable strip. This is placed adjacent to the column a, f; so that Aa, £, is
opposite the value of f,_; just determined. The summation of products can now be effected
conveniently, and in this way the solution completed up to x = 5-0. The final results are
shown in table 15.

TABLE 15
movable strip ‘

t ha,k, n x Sflx) a, fr
20 0-:01020 0 0-00 0:25000 0-08247
19 0-01097 1 0-25 0-17443 0-23039
18 0-01183 2 0-50 0-12515 0-09595
17 0-01280 3 075 0-09212 0-10146
16 0-:01389 4 1-00 0:06941 0-:06811
15 0-01512 5 1-25 0-05344 0-05344
14 0:01653 6 1-50 0-:04198 :

13 0-:01814 7 175 - 0-:03359
12 0-:02000 8 2:00 0-:02733
11 0-02216 ’ 9 2-25 0-02257
10 0-02469 10 2-50 0-01891

9 - 0-02768 11 275 0-01605

8 0-03125 12 3-00 0-01378

7 0:03556 13 3-25 0-01195

6 0-04082 14 3:50 0:01046

5 0-04734 15 375 0-:00923

4 0-05452 16 4-00 0-00822

3 0-07282 17 4:25 0-00736

2 0-06133 18 4-50 0-00662

1 0-13045 19 475 0-00600 :

20 5-00 0-00547 0-00547

In this example we retained throughout the same interval 4 = }. This is not always
essential, and the chance should not be overlooked of increasing the interval, to reduce the
number of terms in the summation and therefore both the labour and rounding error. Here
it is, in fact, possible to use £ = } after x = 2, as shown in the indirect method ().

16. DIRECT METHOD WITH k(x, y)#k(x—y)

As an example of an integral equation for which the kernel is not a function of (x—y)
only, we transform the equation (56) of the previous example by writing

(%) = (x+2)% (%),
a substitution suggested by the form of the integral equation and the rate of decrease of f(x)
with increasing ¥. Equation (56) becomes

¥ —2(x+2)2
o(x—y+2)%(y+2

For the Taylor expansion we must here use the general formula (58) to produce successive
derivatives at x = 0. Writing 7. = (—2)"g"(0)/nl,

)2¢(y) dy = ¢(x) —1. (65)

giving the Taylor expansion

$(x) = 19— ($%) Tﬁ‘(%x)%z“---:

65-2
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we obtain after some manipulation the recurrence relation

1

Z(n—1—s)lsln20s
Ty :ETn—l_l— Zl( *‘-)‘-_
=

> {(s—1) (n—s—m)—2s}7,,. (66)

n! m=0

In this way we calculate, at an interval 2 = }, the first four values of ¢(x). Successive values
can then be obtained from the equation corresponding to (57), which can here be written
in the form

(1+3ay) ¢, = 1 —4(x+2)2 [apk, ko bo+a ki k(G +8py) + ... 1, (67)
—2
where, as before, k, = CESDLE

and where the coefficients @, are modified or not according to the value of .

The values of ¢(x) so obtained, having five significant figures everywhere, provided an
excellent check on the f(x) calculated by the previous method, no f(x) being in error by
much more than half a unit in the fifth decimal.

17. CHECKING. LAPLACE TRANSFORMS

It would not be standard practice to solve an integral equation in two different forms, as
in the last two sections, and other checks are necessary. Apart from the routine checks such
as differencing, a useful auxiliary check can often be provided by means of the Laplace
transformation, when the kernel is of the form £(x—y). This method provides a formal
solution, but the computation may be laborious and only practicable for some values of
the argument.

The Laplace transformation of the integral equation

|} He—9) 1) dy = £) +()

is given by LR 2(f) =2(f)+£(g),
so that 2(/) = =128

Applying the inverse transformation, when this is applicable, we obtain

o _1_ y+ico epxg(g)
) == o) (68)
where the path of integration lies to the right of all the poles of the integrand. It is often
possible to obtain from (68) an analytical expression for f(x) suitable for computational
purposes.

For the previous example given by equation (56) we have

e=~(rrgy 7O =—UtpeE(~2p))

where Ei (x) denotes the exponential integral and

R =]

e—l
——de.
2 b
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NON-SINGULAR LINEAR INTEGRAL EQUATIONS 529

The kernel has the same form as 2g(x), and we therefore obtain

L+pe??Ei(—2p)
2() =5 _hbeszl(( T (69)

This expression does not tend to zero as p—>o0, so that the inverse transformation cannot
be applied directly. If F(x) denotes the indefinite integral of f{x), however, then

2(F) = %;9’(]‘),

and the inverse transformation can be applied directly to £ (F) to give

F(i) (70)

1 1 J"y+ioo et dp
2 2m) e 4p{1+pe Ei(—2p)}
It is easily shown that the expression in braces in equation (70) has no zeros in the complex

plane, excluding the negative real axis along which there is a cut on account of the singular
behaviour of Ei (—2p). We can therefore deform the contour of integration and write

7 1 o+ ot q
(t)~§ 2711J » 4p{l+pe?r Ei(—2p)} P

The contribution from the circle round the origin is imi. Along the negative real axis
Ei (xe*m) = Ei (x) i, so that '

(71)

e—x+2)
F(1) _-1 4f [1—xe 27Ei(2x)]%2+n%x% e wd%
x e—*(t+2)
ot J) = Zfo [1—xe 2*Ei (2%)]2+ m2x? e"‘xdx' (72)

This expression is not very convenient for the routine computation of f(¢). For ¢ = 5,
however, f(f) can be evaluated by numerical quadrature from (72), yielding the values
f(5) = 00054700, #(5) = 0-26803, which agree exactly with the values computed by the
direct numerical method.

Though this provides a useful check on the complete calculation, it cannot be generally
inferred that the numerical values for all x <5 are certain to be correct. Much will depend
on the form of the kernel and the behaviour of the solution. In the computation of f{(x),
for example, any error introduced at an early stage will quickly fade out, since the coefficient
by which it is subsequently multiplied is small. This point receives attention in a later
section, on error accumulation. Before going on to discuss this important aspect we shall
make brief comments on an iterative method, for use with Volterra’s equation, analogous
to that described in § 6 and employed on Fredholm’s equation.

18. A CLASSICAL ITERATIVE METHOD

For the solution of the integral equation (56) Friedlander used an iterative method given
by the relatlons
1 x 2
() — (n—1)
SO = gy JO0) = Gap |, ey e/ 0 . (73)
He evaluated f®(x) analytically, and computed f®, f® and f® by numerical integration,
taking f®(x) as an acceptable solution of the integral equation. In fact, his errors in the
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530 L. FOX AND E. T. GOODWIN ON

fourth decimal, at x = 1, 2, 3 and 4, are 4, 5, 13 and 25 units respectively. The labour of
this method is somewhat excessive, and it is clear that the order of iterate necessary to give
accurate results is likely to increase with x. This process is therefore less satisfactory than in
the case of Fredholm’s equation, though again the Aitken extrapolation method and the
Euler transformation can be used to accelerate convergence. For example, using an interval
h =%, we find at x = 1-0 the following values of the first four iterates: 0-11111, 0-05849,
0-07126, 0-06916. Aitken’s process applied to the last three values produces the result
0:06946, in error by only five units in the fifth place. Again at x = 4-0, we have the following
series of terms, taken from Friedlander’s paper, tabulated and differenced for use with
Euler’s transformation:

(+) 0-0278
4102
(=) 0-0380 —190
— 88 +154
(+) 0-0292 — 36 —82
—124 + 72
(—) 0-0168 + 36
— 88
(+) 0-0080

The Euler transformation produces a value 0-0078, considerably closer to the true value
0-0082 than the 0-0057 given by Friedlander. (This value 0-0078 is unreliable in the last
figure, since Friedlander tabulated only to four decimals the terms w, of a series f = X2",.
The above table contains values of 27,.)

19. ERROR ANALYSIS

In the evaluation of recurrence relations, or in the computation involved in any step-
by-step process, it is desirable to know the effect of introducing an error at any stage. An
error of this kind is not a blunder, for whose detection the differencing check is usually
sufficient, but is introduced whenever a number is rounded off to a prescribed number of
decimals or significant figures. This error is propagated throughout the rest of the work,
and its effect may die away, remain approximately constant, or increase indefinitely. In
the latter case we have a butlding-up error which, unless detected and removed, will severely
limit the accuracy of the results.

The analysis of error in integral equations is similar to that of first order differential
equations. If we want a particular integral of the equation

%H)(x) y = q(x), (74)

the numerical process will introduce, through rounding errors, multiples of the comple-
mentary function, the solution of

d
d—i—#p(x)y = 0. (75)

If the complementary function dies away with increasing x the effect is not serious; if it
increases at the same rate as the particular integral we shall lose accuracy in decimals but
not in significant figures; if it increases faster than the particular integral its effect is serious.
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It is not possible here to give a general discussion on the conditions governing the in-
cidence of building-up error in the numerical solution of Volterra’s equation (4). We shall,
in this section, give some simple examples of building-up error and of methods of mitiga ting
its effect which are representative of some broad classes of integral equations, providing by
analogy appropriate results for more general cases. ‘

From equation (57) it is apparent that building-up error is likely to be associated with
positive values in the kernel, corresponding in the Fredholm case with ill-conditioning in
the simultaneous equations. It would also appear that when £(x, y) varies, the effect is more
or less severe according as it increases or decreases with decreasing y. As typical examples
we consider separately the cases in which the kernel is of exponential or oscillatory type.

If k(x,y) = A e#*9 the equation governing the building-up error, corresponding to (75)
for the complementary function of the first order differential equation (74), is given by

Sl =4[ v fig)dy. * (76)
On differentiation this reduces to the form

S = @A+n 1
and there will be an exponential build-up of error if 1+ x> 0.

If k(x,y) = Acospu(x—y) the kernel has its maximum value at the upper limit in the
integral. The ‘error equation’ can be reduced to the form

Fr=Afaf = 0
with exponentially increasing solutions if 1> 0, | 2u | <|A].
If k(x,y) = Asin g(x—y) the kernel has its maximum at the lower limit, and we ﬁnd

S =wd=p) f
with exponentially increasing solutions if z(A—u) > 0.

Other simple equations can be constructed which are amenable to this type of analysis,
and it is often possible to obtain an idea of the behaviour of more complicated equations
by analogy with one of these cases. The integral equation (56) has a kernel which is negative
everywhere, with a modulus which steadily decreases. It can therefore be compared with
(76), with both A and x negative, giving no error build-up. Even if the sign of the kernel
were changed, giving a positive 4, the decrease in modulus is so rapid that there is still no
substantial error accumulation. ‘

Another approach to error analysis, for a kernel of the form k(x—y), is provided by the
Laplace transformation. The previous analysis is qualitative, in the sense that it examines
the behaviour of the complementary function, introduced by a single rounding error. In
fact, such a rounding error is made at every point, and it is more accurate to take for the
total error propagation the solution of the integral equation obtained from (4) by replacing
g(x) by a step-function s(x), for which 4>s(x) > —$ for all x. The solution of this equation
is given formally by yHin otr 2 (s)

)= =

which is equation (68) with g replaced by s.
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The presence of exponentially increasing factors in the solution of (77) is in general
governed by the form of the denominator of the integrand, and will exist if the denominator
has a zero in the right half plane. By this theorem we can again confirm the lack of building-
up error in the solution of equation (56), or even of the same equation with the sign of the
kernel reversed.

We note also that errors build up more rapidly than the wanted solution, the only really
serious condition, when the zero of the function 1 —%(k) having the largest positive real
part is also a zero of £(g). Serious building-up error is not therefore a very common occur-
rence, and in this respect integral equations are again more similar to first order differential
equations than to those of higher order.

We cannot here give a general discussion of methods of eliminating error build-up in the
cases where this occurs, but some possibilities might be mentioned. The most obvious and
simple method is to retain extra ‘guarding’ figures throughout, a method whose success
depends solely on the rate of error increase. Alternatively, it is sometimes possible to trans-
form the integral equation to another form, in the solution of which errors are less likely
to accumulate.

Examination of equation (57) and the simple examples given earlier in this section shows
that severe error build-up occurs when £(x, x) is large and positive. If g(x) is such that the
wanted solution does not itself increase in the same way, then retention of guarding figures
may lead to a prohibitive amount of computation. The alternative procedure, however,
is often possible.

On differentiating equation (4) with respect to ¥ we obtain an equation which can be
written in the form

&)+ gy k) flo) dy = £ E 4 L8 (78)

Now k(x, x) is large and positive, but f{x) does not vary rapidly, so that f”(x) is small. We can
therefore solve (78) by a method of successive approximation, solving first for f(x) by

neglecting the last term in (78), calculating the latter approximately from the approximate

f(x) so obtained, and continuing the iterative procedure until there is no further change in f.
It might here be remarked that the direct solution of (78), obtained by using finite-difference

formulae for the derivative as well as integral involved, is not satisfactory, since a backward-

difference formula must inevitably be used for the derivative, causing a partial cancellation

in the coeflicient of f(x) on the two sides of the equation.
As an example we consider the equation

f 0 10cos (x—y) fly) dy = flx) — (1—5%) sinx, (79)

which is known to have the analytical solution sin x. If this equation is solved by the direct
method the error builds up alarmingly, a solution to four decimals at an interval 4 = 0-1
having an error of 638 units at ¥ = 1-5. The alternative form of this equation is given by

Slx) —-J:sin (x—y) fly) dy = §(x cos x+sinx) —5 cos x 5./ (%). (80)

At an interval of # = 0-2, this equation was solved, neglecting its last term, as far as x = 4-0.
From this approximate f(x) an approximation to f’(x) was calculated at every pivotal point
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by the central-difference formula. These values were then used in equation (80) and a
second approximation calculated for the wanted function f{x). This second approximation
has a maximum error of two units in the fourth decimal. Theoretically this approximation
should here agree with the analytical solution, since the solution of equation (80) with the
last term omitted is sin x —4%;, differing from the solution of (79) only by a constant.

Finally, we mention an alternative treatment of equations like (79), for which the
‘particular integral’ remains of fairly constant size while the ‘complementary function’
increases very rapidly. For this method we need to know, by the Laplace transform method
or otherwise, the required solution for some fairly large value of .

Consider, for example, the problem of equation (79), for which we have the additional
information that f(1-5) = 0-9975. The direct method gives a solution f; which can be
regarded as a combination of the true solution f and a contaminating building-up error

E, so that f = f+E
L= :

Now any different g(x) for which the true particular integral builds up will produce a
solution f, which, after a few steps, is some multiple of E, so that

f, = kE.

If we know the error f; —f for some value of x, we can therefore correct everywhere our.
approximation f; and produce an accurate f from the formula

S=h—pte

Table 16 shows a portion of the solution f; obtained by the direct method applied to
equation (79), and the discrepancy between f; and the true solution sin x. The table also gives
a second solution f, obtained by replacing g(x) by unity. We find that to make our solution
correct at ¥ = 1-5 we have to take £ = 0-1925, and the final column then gives the correction
to f; to be applied at other values of x. The final error has a maximum of one unit.

TABLE 16 : .
x Ji(x) E(x) fLo(x) (g=1)  0-1925f,(x)
07 0-6443 1 1 0
0-8 0-7174 0 3 1
0-9 0-7835 2 9 2
1-0 0-8419 4 23 4
1-1 0-8924 12 63 12
12 0-9353 33 169 33
1-3 0-9723 87 455 88
14 1-0091 236 1228 236
15

1-0613 638 3314 ' 638

20. SUMMARY AND CONCLUSION

In this paper we have discussed, and illustrated in some detail, methods for solving
linear integral equations of both Fredholm and Volterra types. Most of the methods are
based on the theory of finite differences, so that only non-singular integral equations
received attention. For singular integral equations numerical methods would be much
more difficult to apply. Such equations are probably best treated analytically, either to
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obtain a mathematical solution or to transform them to non-singular type; if numerical
methods are used they could be expected to produce only approximate results, with errors
not easily calculable.

The general methods given here are applicable to certain kinds of non-linear integral
equations, though they would generally involve the solution of non-linear simultaneous
algebraic equations, for which no very satisfactory general methods are yet available.
Finally, they can also be used for some integro-differential equations, either by methods of
successive approximation or by direct methods in which both integrals and derivatives
are replaced by finite-difference expressions.

The work described above has been carried out as part of the research programme of
the National Physical Laboratory, and this paper is published by permission of the Director
of the Laboratory.
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